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Abstract— In this paper, we introduce a novel method to
estimate relative pose calibration parameters between the
coordinate frames of high-density LiDAR sensors and optical
cameras. The main contribution of this paper is the introduction
of rendered synthetic LiDAR images using the point cloud
reflectivity information that enable the use of 2D feature
detectors to match calibration tag corners between the camera
image and a dense LiDAR point cloud. Experimental results are
evaluated by synthetic tests as well as real data collected using
a Livox Mid-40 LiDAR and MYNT EYE D camera. Synthetic
tests quantitatively demonstrate low error in transformation
under a certain range of noise level. Moreover, our algorithm
doesn’t require measurement of the physical size of calibration
targets, which avoids the measurement error in real-world
applications. Alignment on real data between the modalities
shows qualitatively well aligned visual results.

I. INTRODUCTION

With the evolution of perception systems on autonomous
vehicles and mobile robots, the combination of cameras and
Light Detection And Rangings (LiDARs) plays an increasing
role in sensing the environment. Cameras and LiDARs
provide information in complementary structures: cameras
project the three-dimensional (3D) environment into two-
dimensional (2D) space with color and texture; LiDARs
measure the 3D environment and output a metric point cloud.
The alignment of data from cameras and LiDARs is a fun-
damental requirement for higher level detection, navigation,
mapping, and 3D reconstruction algorithms, but remains
a challenging problem because the modalities observe the
world in different ways.

The increase in popularity of LiDAR technology with
the development of autonomous vehicles has boosted the
development of higher resolution, lower cost devices uti-
lizing novel technologies such as non-repetitive scanning
LiDAR [1]. This in turn is driving an increase in adoption
by researchers and industry. LiDAR technology is being
deployed on an increasing number of robotic platforms and
domains. As a consequence, robust and fully automated
calibration algorithms have to be developed to integrate
LiDAR devices with the rest of a robots sensing technology.

This work has been motivated by the realization that re-
flectivity, a value associated with each point in the laserscan
that measures the strength of the returned signal can be cross-
registered with the intensity captured by an optical camera
in the visible light spectrum [2]. This characteristic can
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be exploited to design appropriate calibration targets whose
features can be detected in both the LiDAR and camera data
to establish correspondences between the sensors.

In this work we introduce a novel calibration method based
on the rendering of synthetic images from a high-resolution
LiDAR point cloud. Robust computer vision target detection
[3] and pose estimation algorithms [4] developed for 2D
imagery can be applied on the rendered images to obtain
feature correspondences between the camera images and the
LiDAR point cloud, enabling the estimation of the sensor
relative pose. The introduced method is fully automated
and does not require operator intervention. Results on real
data are presented together with an analysis of the method’s
robustness.

The main contributions of this paper are 1) The introduc-
tion of synthetic LiDAR images to enable cross-modality
feature identification and matching, 2) Its application for
dense LiDAR to camera calibration problem without bringing
measurement error of target size into the loop. Both quanti-
tative and qualitative results are evaluated and validated on
experimental data.

The rest of the paper is structured as follows: Section
II reviews previous work in the field of LiDAR to camera
calibration. Section III describes the developed calibration
procedure, while Section IV introduces the experimental
evaluation of the method. Section V outlines our conclusions
and future work.

II. RELATED WORK

The calibration of LiDAR and camera systems consists
in the estimation of the transformation that aligns the two
measurement coordinate systems. Early work in the field
was done by Zhang and Pless [5]. The authors used a
checkerboard calibration target to estimate extrinsics between
a pinhole camera and a 2D range finder by constraining the
laser scan points to lie on the planar surface observed in the
camera image. Their work was extended by Unnikrishnan et
al. [6] into the first 3D LiDAR to camera calibration toolbox.
Their method requires the user to manually selects the points
in the LiDAR point cloud to locate the calibration checker-
board plane. Once identified, a plane to plane correspondence
is imposed on the chosen points to build constraints. Such
manual selections slow down the calibration procedure and
introduce the possibility for operator error. Latter methods
extend the concept of corresponding planes between the
camera and LiDAR data. Pandey et al. [7] proposed a
calibration routine for LiDAR and omnidirectional cameras.
Zhou and Deng [8] introduced a virtual coordinate frame



on the checkerboard target and used it to estimate rota-
tion and translation decoupled from each other. Geiger et
al. [9] developed an algorithm capable of identifying multiple
checkerboards simultaneously with one shot. Simultaneous
detection of multiple targets enables faster data collection,
which is supported by the method introduced in this paper
as well. In addition to plane to plane constraints, Zhou et
al. [10] further proposed a method that incorporates plane to
plane constraints and edge to line constraints. Their method
requires a single checkerboard observation, greatly reducing
calibration data acquisition time.

All the camera calibration methods introduced above em-
ploy a checkerboard as the calibration target. In such methods
the cameras detect the calibration target corner points and can
thus identify the surface, while the 3D spatial distribution of
point clouds is used to identify the plane in the LiDARs
frame of reference. Most frequently, at least three such
corresponding observations are required in order to be able to
recover the camera to LiDAR relative pose. In our proposed
target-based algorithm, instead of establishing 2D plane to
plane constraints between the camera and LiDAR we match
point features between the image and point cloud, requiring
less data to constraint the calibration problem. Such 3D-
2D point correspondence is also employed by [11]–[13]. In
comparison, our method uses standardised calibration target,
and detects features without human intervention nor mea-
surement on the physical size of target to avoid introducing
errors into our system.

In addition to checkerboards, variations of target pattern
and geometry are introduced in [14]–[17] to increase de-
tection precision. However, the increase in complexity of
the target geometry negatively affects the ease of use and
robustness of the algorithms. In order to develop a robust
method the proposed calibration procedure uses printed
AprilTag targets. These targets have been extensively used
for the calibration of optical cameras [18] and shown to
outperform the accuracy of checkerboard based methods [3].

Other approaches have attempted to exploit intensity
values in a LiDAR point cloud in addition to geometric
information. Pandey et al. [2] proposed to correspond LiDAR
reflectivity with intensity in the camera image, maximizing
the mutual information. Irie et al. [19] expanded the method
including point cloud norms and discontinuity. Instead of
global alignment of LiDAR and camera intensity, our ap-
proach uses LiDAR reflectivity to extract and identify feature
points from point clouds of the calibration target, avoiding
the need for costly global optimization.

III. METHODOLOGY

This section details our proposed LiDAR-camera calibra-
tion method to estimate the rotation Rc

l and translation T c
l be-

tween the LiDAR and camera coordinate frames, as shown in
Fig. 1. Our method is based on the observation of known cal-
ibration targets by both the camera and LiDAR and requires
matching features between the camera image and LiDAR
point cloud. Feature extraction in 2D images [20]–[23] is a
well studied topic in the robotics community. However much

Fig. 1: Configuration of targets and sensors. The LiDAR and
camera are rigidly mounted together. 3D LiDAR points can
be projected onto a virtual image plane in LiDAR coordinate.

less work has been done on 3D point cloud feature detection
due to the lack of texture and the discrete nature of LiDAR
data. In order to leverage 2D feature extraction algorithms,
in this work we propose to render a synthetic image from the
LiDAR point cloud using the reflectivity values. This allows
us to identify the calibration targets in the point cloud as
well as in the camera image and compute the required 3D-2D
matches. The relative pose between the two sensors is finally
obtained using the Perspective-n-Point algorithm (PnP) [4].
The complete process is shown in Fig. 2.

A. Targets and Sensors Setup

1) Calibration Targets: In order to obtain robust and
salient features in both the camera and LiDAR data we em-
ploy AprilTag calibration targets. AprilTags can be uniquely
identified by their pattern, enabling the use of multiple tags
in the same scene for better coverage and quicker calibration.

2) Camera: The camera intrinsic parameters (focal
length, center of projection, and distortion coefficients) need
to be known a priori and can be estimated with a conventional
camera calibration process [18], [24].

3) LiDARs: Our algorithm is developed for non-repetitive
scanning LiDARs that can provide accumulated high resolu-
tion scans of the calibration targets. Our experience suggests
that LiDARs with a scanning density of 100 pts/deg2 are
required for the proposed method to work reliably.

B. Feature Detection

1) LiDAR synthetic image: In order to render the LiDAR
synthetic image, we construct a virtual camera projection
model to match the LiDAR Field Of View (FOV). The aspect
ratio of the virtual camera image is chosen to match the
scanning footprint of the LiDAR, shown in Fig. 3. The center
of the projection (cx, cy) is defined to be at the center of the
image. Image resolution has to be chosen smaller than the
point cloud resolution to ensure most pixels in the image
correspond to at least a point in the point cloud. If the
selected resolution is too low, artifacts and poorly defined
tag edges will be generated. Specific values will thus depend
on the LiDAR and distance to target used.

Given the LiDAR FOV angle αfov , specified in the device
data sheet, we can compute minimum focal length, fx and
fy , required to ensure all 3D LiDAR points are projected into
the image. From the camera projection model [25], we can



Fig. 2: Flow Chart of our algorithm: Left column describes
how camera image stream is processed; center column is the
flow of raw LiDAR data. With projection model (column in
the right), features are extracted in the point cloud. 2D and
3D features are further paired and fed to the PnP solver.

derive the following relationship between the focal length,
image size lw × lh and FOV angle:
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Once the virtual camera intrinsic parameters have been
determined, the 3D points can be projected into the image
as:
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where (Xi, Yi, Zi) is the 3D coordinate of ith LiDAR
point, and (ui, vi) is the 2D coordinate of the corresponding
point projected onto the virtual LiDAR image.

For each projected point (ui, vi), we set the brightness of
the corresponding pixel, B(ui, vi), according to the follow-

Fig. 3: Point cloud reflectivity can be used to identify the
black and white areas on the AprilTag targets. The white
parts on the targets have a reflectivity value around 100,
while on the black parts, reflectivity values are lower than
10.

ing rule:

B(ui, vi) =

{
0 if φ ≤ φthr
1 if φ > φthr

where φ is the reflectivity value associated with each Pi

and φthr is a fixed threshold value. Median filtering with a
3× 3 kernel or image down-sampling with nearest neighbor
interpolation can be applied to help improve image quality in
the case of high noise in the rendered image. Fig. 4a shows
an example synthetic image.

2) Point cloud corner detection: 2D AprilTag detection
algorithms can be applied to the synthetic rendered image
to find the corners of the tags. Fig. 4b shows the detected
AprilTag corners on six calibration boards. Once the corner
positions have been found it is required to map them back to
3D space. We first extract and parameterize 3D target planes
from 3D LiDAR cloud with RANdom SAmple Consensus
(RANSAC) algorithm [4]. Then we project 2D tag corners
back into 3D space. The 3D corner points C, where Ck

j ∈ C
is the jth corner of the kth tag in one observation, are
localized as the intersections of target planes and back
projection rays. This method doesn’t requires any knowledge
on the size of the tags which avoids hand-measure errors.
However, in the case that we have confidence in knowing
the physical size of tags, 3D corners can also be estimated
by PnP algorithm as an alternative.

3) Camera corner detection: The calibration targets are
detected in the camera image using the same detector used
on the virtual image. This will provide a set of 2D corner
coordinates. We notate the set of camera observed tag corners
as c, where ckj ∈ c is the jth corner of the kth tag in one
camera observation in 2D image coordinates. Fig. 4c shows
a raw camera image of the AprilTags, while Fig. 4d shows
the extracted corners in the same image.



(a) Synthetic LiDAR image (b) Corners detected on synthetic
LiDAR image

(c) Raw camera image (d) Tag corners detected on raw
camera image

Fig. 4: Detection of tag corner points on camera image and
generated LiDAR images, observed at 4.5m from targets.
Corners on one tag can be identified by tag orientation as
shown by the matching corner color. Corners on different
tags can be identified by AprilTag ID.

C. Extrinsic Parameters Estimation

The uniqueness of the AprilTag calibration targets allows
us to pair tag corner detections C from the LiDAR and cam-
era corner detections c. This generates a set of corresponding
3D LiDAR corners and 2D camera corners (Ck

j , c
k
j ).

The problem of estimating the rotation and translation to
align 2D observations with 3D points has been extensively
studied in the computer vision literature and is known as
PnP. PnP and RANSAC algorithms [4] are combined to find
the rotation Rc

l and translation T c
l that aligns the camera

observations with the LiDAR coordinate frame. Given cam-
era matrix K the PnP problem can be formulated as the
following equation for each 2D-3D point pair:
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where (u′, v′) ∈ c, (X ′, Y ′, Z ′) ∈ C and s is the scale
factor. The above system of equations can be solved using
Levenberg-Marquardt optimization. RANSAC is integrated
into the PnP solver to rejected outliers in the 3D to 2D point
pairs. Implementations are provided by open source libraries
such as OpenCV.

To visualize the calibration result, we can map the 3D
point cloud to the camera image pixels, then generate colored
point cloud with corresponding color from the image. A good
calibration aligns colors and shape reasonably.

IV. EXPERIMENTS
In this section, we evaluate our proposed algorithm in

comparison with Huang’s method [13] and Zhou’s method
[10]. Since ground truth of sensor calibration is a chicken-
and-egg problem, we did the quantitative comparison by
synthetic tests. We qualitatively validate our real-world cal-
ibration result by mapping LiDAR cloud to camera image,
and examine both the color-intensity alignment in 2D image
and color-shape alignment in 3D cloud.

1) Synthetic Tests: Huang’s method employs similar idea
with ours, which first identifies the 3D pose of target
from LiDAR then solve relative camera pose with PnP, but
features a ”Soft L1 Norm” cost function. Zhou’s method
fully exploits the widely studied plane-plane and line-line
correspondence and significantly reduces the number poses
needed to achieve state-of-the-art accuracy. We used April-
Tags from the 36h11 family as our calibration target. The
target IDs are encoded in 36 bits with a minimum Hamming
distance of 11 bits between family members. The LiDAR vir-
tual image is initialized with a size of lw× lh = 1000×1000
and focal length fx = fy = 1400. We tested the algorithms
with configurations of number of tags ranges 1 to 20 and zero
mean Gaussian noise in LiDAR measurement with deviations
of 0.1%, 0.2% and 0.3% of the range measurement value.
We collected mean and median of rotation and translation
error from 100 runs of each configuration with randomly
generated camera-to-LiDAR poses. Specifically, camera’s
rotation angles and translation distances are uniformly dis-
tributed within 20 deg and 1m respectively, both in randomly
distributed directions w.r.t. LiDAR coordinate frame. Given
the ground truth transformation (RGT , tGT ) and estimation
(R, t), the rotation error can be represented by the following
formula [26]:

α = cos−1((trace(RGT RT )− 1)/2) (4)

We calculated the translation error by its magnitude
||tGT − t||2.

As shown in Fig. 5, our algorithm achieves its best
performance with no less than 10 tags and σ ≤ 0.2%.
Specifically, our algorithm outperforms the rivals with noise
level of σ = 0.1%, while provide similar accuracy with
σ = 0.2%. Drawbacks of our algorithm are also revealed:
1) our algorithm gives underfitting results with only one tag
observation, since only 4 corners are involved in solving
PnP problem, 2) the translation error grows significantly with
increase of noise level σ, the reason of which is to be further
studied but one possibility is that both our rivals brings the
knowledge of target’s physical size into the loop which can
eventually tighten the constraints in translation. Nevertheless,
our rival’s accuracy will possibly be downgraded in real
world applications due to the error in measurement of the
target size while ours will not.



Fig. 5: Comparison of our algorithm with Huang’s algorithm and Zhou’s algorithm by synthetic tests. Rotation and translation
errors are investigated with Guassian noise with deviation of 0.1%, 0.2% and 0.3% w.r.t. LiDAR measurement value.

(a) (b)

Fig. 6: Experiment set-up: (a) shows the coordinate configu-
ration of Livox Mid-40 LiDAR and MYNT EYE D camera.
(b) shows the AprilTags calibration targets.

2) Qualitative Results: In this section we present experi-
mental results on real data validating the calibration method
presented in Section III. Our experimental setup is composed
of a Livox Mid-40 LiDAR and a MYNT EYE D stereo
camera, of which only one camera was used for the presented
results. The LiDAR and MYNT EYE D camera were rigidly
mounted together as seen in Fig. 6a. The camera had been
previously calibrated using the Kalibr toolbox [18] and the
image stream undistorted before further processing.

The AprilTags from the 36h11 family were printed in
poster size (0.51m × 0.51m for each block and 0.15m
spacing on each edge) and mounted on foam boards, with
a single tag per board. Six such AprilTag boards were
assembled and hung in different orientations, as can be seen
in Fig 6b.

The Livox Mid-40 LiDAR provides 105 unique points
per second. A high density cloud with 106 points can be
accumulated in 10 seconds for our experiment. An example
raw LiDAR scan is shown in Fig. 3: the black areas on the
AprilTag generate point clouds with very low reflectivity val-
ues (lower than 20) that are colored in deep blue. Laser points
originating from the white areas off the targets generally have
values higher than 40. This information was used to set φthr
to 30. All the targets are successfully detected with 4 corners.

To visualize the alignment between image and point cloud,
we apply the estimated transformation to the LiDAR point
cloud, and project it into the camera image plane. This
generates a camera image (Fig. 7a) and a LiDAR virtual
image (Fig. 7b) on the same image plane, as they share the
coordinate frame after the transformation. The LiDAR image
is colored by reflectivity, where higher reflectivity values are
assigned a lighter color. To compare the two images Fig. 7c
shows sub-blocks of the two images interleaved, highlighting
edge and texture alignment.

3D alignment are visualized by coloring the point could
with the corresponding pixel color, as shown in Fig. 8. Align-
ment quality can be observed through the proper coloring of
the walls, window frames, trees and scooter.

V. CONCLUSIONS
In this paper we have presented a novel approach to

automatically calibrate the extrinsics of a LiDAR and camera
system using fiducial targets. We rendered a virtual LiDAR
binary image using the laserscan reflectivity information.
Feature detectors are then applied to detect and identify
feature points in the LiDAR image and are then mapped back
to 3D space. With 3D feature points in the LiDAR coordinate



(a) Camera image (b) LiDAR cloud projected onto
camera image plane and colored
with reflectivity value. Higher
reflectivity has a lighter color.

(c) Alternatively tiled camera image and LiDAR image. Adjacent
sub-blocks show alignment of texture on building.

Fig. 7: Alignment check of camera image and LiDAR point
cloud: point cloud is projected to camera image plane with
estimated transformation, and shown in blue-green spectrum

frame and the corresponding 2D points in the camera image
paired by tag ID, the calibration problem can be solved
using PnP solutions. Synthetic evaluation reveals that our
algorithm provides comparable accuracy with other latest
approaches. Real world experiments highlight the robustness
of the method and its ability to correctly align the LiDAR
and camera data without operator intervention.

As our algorithm only extracts 4 corners from each tag, it
wastes the space on the calibration target. Our future work
include developing a more space-efficient feature which can
be shared by our LiDAR with optical cameras which can
eventually boost up the efficiency of the whole calibration
process.

REFERENCES

[1] Livox mid series user manual v1.2. Aug. 2019.

Fig. 8: Point cloud colored with corresponding RGB values
to show qualitative results of calibration.

[2] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice,
“Automatic extrinsic calibration of vision and lidar by max-
imizing mutual information,” Journal of Field Robotics, vol.
32, no. 5, pp. 696–722, 2015.

[3] E. Olson, “Apriltag: A robust and flexible visual fiducial
system,” in 2011 IEEE International Conference on Robotics
and Automation, IEEE, 2011, pp. 3400–3407.

[4] M. A. Fischler and R. C. Bolles, “Random sample consen-
sus: A paradigm for model fitting with applications to image
analysis and automated cartography,” Communications of the
ACM, vol. 24, no. 6, pp. 381–395, 1981.

[5] Qilong Zhang and R. Pless, “Extrinsic calibration of a cam-
era and laser range finder (improves camera calibration),”
in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 3, Sep. 2004, 2301–2306 vol.3.

[6] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration
of a laser rangefinder to a camera,” Robotics Institute,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-05-09, 2005.

[7] G. Pandey, J. McBride, S. Savarese, and R. Eustice, “Ex-
trinsic calibration of a 3d laser scanner and an omnidirec-
tional camera,” IFAC Proceedings Volumes, vol. 43, no. 16,
pp. 336 –341, 2010, 7th IFAC Symposium on Intelligent
Autonomous Vehicles.

[8] L. Zhou and Z. Deng, “Extrinsic calibration of a camera
and a lidar based on decoupling the rotation from the
translation,” in 2012 IEEE Intelligent Vehicles Symposium,
IEEE, 2012, pp. 642–648.

[9] A. Geiger, F. Moosmann,. Car, and B. Schuster, “Automatic
camera and range sensor calibration using a single shot,”
in 2012 IEEE International Conference on Robotics and
Automation, May 2012, pp. 3936–3943.

[10] L. Zhou, Z. Li, and M. Kaess, “Automatic extrinsic cali-
bration of a camera and a 3d lidar using line and plane
correspondences,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, IROS, Oct. 2018.

[11] D. Scaramuzza, A. Harati, and R. Siegwart, “Extrinsic self
calibration of a camera and a 3d laser range finder from



natural scenes,” in 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2007, pp. 4164–4169.

[12] Z. Pusztai and L. Hajder, “Accurate calibration of lidar-
camera systems using ordinary boxes,” in Proceedings of
the IEEE International Conference on Computer Vision
Workshops, 2017, pp. 394–402.

[13] J.-K. Huang and J. W. Grizzle, “Improvements to target-
based 3d lidar to camera calibration,” ArXiv preprint
arXiv:1910.03126, 2019.

[14] H. Alismail, L. D. Baker, and B. Browning, “Automatic
calibration of a range sensor and camera system,” in 2012
Second International Conference on 3D Imaging, Modeling,
Processing, Visualization Transmission, Oct. 2012, pp. 286–
292.

[15] Y. Park, S. Yun, C. Won, K. Cho, K. Um, and S. Sim,
“Calibration between color camera and 3d lidar instruments
with a polygonal planar board,” Sensors, vol. 14, no. 3,
pp. 5333–5353, 2014.
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